Friday, 28 August 2015

Aircraft Stall - Description of A Fixed Wing Aircraft


The angle of attack of air 
fixed-wing aircraft can be made to stall in any pitch attitude or bank angle or at any airspeed but is commonly practiced by reducing the speed to the un-accelerated stall speed, at a safe altitude. Un-accelerated stall speed varies on different fixed-wing aircraft and is represented by colour codes on the air speed indicator. As the plane flies at this speed, the angle of attack must be increased to prevent any loss of altitude or gain in airspeed (which corresponds to the stall angle described above). The pilot will notice the flight controls have become less responsive and may also notice some buffeting, a result of the turbulent air separated from the wing hitting the tail of the aircraft.
In most light aircraft, as the stall is reached, the aircraft will start to descend (because the wing is no longer producing enough lift to support the aircraft's weight) and the nose will pitch down. Recovery from the stall involves lowering the aircraft nose, to decrease the angle of attack and increase the air speed, until smooth air-flow over the wing is restored. Normal flight can be resumed once recovery is complete. The maneuver is normally quite safe and if correctly handled leads to only a small loss in altitude (50ft -100ft). It is taught and practiced in order for pilots to recognize, avoid, and recover from stalling the aircraft. A pilot is required to demonstrate competency in controlling an aircraft during and after a stall for certification, and it is a routine maneuver for pilots when getting to know the handling of a new aircraft type. The only dangerous aspect of a stall is a lack of altitude for recovery.
A special form of asymmetric stall in which the aircraft also rotates about its yaw axis is called a spin. A spin can occur if an aircraft is stalled and there is an asymmetric yawing moment applied to it. This yawing moment can be aerodynamic (sideslip angle, rudder, adverse yaw from the ailerons), thrust related (p-factor, one engine inoperative on a multi-engine non-centreline thrust aircraft), or from less likely sources such as severe turbulence. The net effect is that one wing is stalled before the other and the aircraft descends rapidly while rotating, and some aircraft cannot recover from this condition without correct pilot control inputs (which must stop yaw) and loading. A new solution to the problem of difficult (or impossible) stall-spin recovery is provided by the  Ballistic parachute recovery system.
The most common stall-spin scenarios occur on takeoff (Departure stall) and during landing (base to final turn) because of insufficient airspeed during these maneuvers. Stalls also occur during a go-around manoeuvre if the pilot does not properly respond to the out-of-trim situation resulting from the transition from low power setting to high power setting at low speed. Stall speed is increased when the wing surfaces are contaminated with ice or frost creating a rougher surface, and heavier airframe due to ice accumulation.
Stalls occur not only at slow airspeed but can occur at any speed - but only if the wings exceed their critical angle of attack. Attempting to increase the angle of attack at 1g by moving the control column back normally causes the aircraft to climb. However, aircraft often experience higher, for example when turning steeply or pulling out of a dive. In these cases, the wings are already operating at a higher angle of attack to create the necessary force (derived from lift) to accelerate in the desired direction. Increasing the g loading still further, by pulling back on the controls, can cause the stalling angle to be exceeded -even though the aircraft is flying at a high speed. These "high-speed stalls" produce the same buffeting characteristics as 1g stalls and can also initiate a spin if there is also any yawing.

Source - Unknown

No comments:

Post a Comment